脂肪酸

更新时间:2023-11-23 13:00

脂肪酸((fatty acid))是由碳、氢、氧三种元素组成的一类化合物,是中性脂肪、磷脂和糖脂的主要成分。脂肪酸代谢脂肪酸根据碳链长度的不同又可将其分为:短链脂肪酸,其碳链上的碳原子数小于6,也称作挥发性脂肪酸;中链脂肪酸,指碳链上碳原子数为6-12的脂肪酸,主要成分是辛酸(C8)和癸酸(C10);长链脂肪酸,其碳链上碳原子数大于12。一般食物所含的大多是长链脂肪酸。脂肪酸根据碳氢链饱和与不饱和的不同可分为3类,即:饱和脂肪酸,碳氢上没有不饱和键;单不饱和脂肪酸,其碳氢链有一个不饱和键;多不饱和脂肪酸,其碳氢链有二个或二个以上不饱和键。

简介

脂肪酸是由碳、氢、氧三种元素组成的一类化合物,是中性脂肪、磷脂和糖脂的主要成分。

脂肪酸可分成两类:一类是分子内不带碳碳双键的饱和脂肪酸,如硬脂酸、软脂酸等;另一类是分子内带有一个或几个碳碳双键的不饱和脂肪酸,最常见的有油酸,油酸的碳链中只有一个碳碳双键,所以又叫单不饱和脂肪酸。一般脂肪酸化合物的碳链都较短,其长度一般在18-36个碳原子,最少的就是12个碳原子,如月桂酸。不管饱和的或不饱和的,生物体内脂肪酸的碳原子数大多是偶数,极少含有奇数碳原子,尤其是在高等动植物体内主要存在12碳以上的高级脂肪酸,一般在14-24个碳,以16和18碳脂肪酸最为常见。奇数碳原子脂肪酸仅在一些植物、反刍动物、海洋生物、石油酵母等体内部分存在。

含有多量饱和脂肪酸的甘油三酯在常温时往往是固体,例如牛油、羊油等,大多属动物脂肪。含有较多不饱和脂肪酸甘油三酯在常温时往往是液体,例如玉米油、菜油等。植物和鱼类的油大多是不饱和脂肪酸的甘油酯

动物体内不能合成带有2-4个双键的不饱和脂肪酸,必须从食物中取得,因而这些脂肪酸就叫必需脂肪酸,也有人叫它维生素F。虽然已认为它们能降低血液中的胆固醇,但还没有证据能证明人会因为食物中缺乏这些脂肪酸而引起疾病。微生物中也含有不饱和脂肪酸,蓝细菌最独特之处是含有两个或多个双键组成的不饱和脂肪酸,而细菌通常只含有饱和脂肪酸和一个双键的不饱和脂肪酸。

2022年,中国科学家通过电催化与生物合成相结合成功以二氧化碳和水为原料合成脂肪酸。

理化性质

(1)色泽与气味

纯净的脂肪酸是无色的,某些脂肪酸具有自己特有的气味。

(2)密度

脂肪酸的相对密度一般都小于1,与其相对分子质量成反比,随温度的升高而降低,随碳链增长而减小,不饱和键越多密度越大。

(3)熔点

脂肪酸的熔点随着碳链的增长呈不规则升高,奇数碳原子链脂肪酸的熔点低于其相邻的偶数碳脂肪酸,不饱和脂肪酸的熔点通常低于饱和脂肪酸,双键越多,熔点越低,双键位置越靠近碳链两端,熔点越高。

引入一个双键到碳链中会降低脂肪酸的熔点,双键位置越向碳链中部移动,熔点降低越大,顺式双键产生的这种影响大于反式。双键增加熔点下降,但共轭双键不在此例。经过氢化、反化或非共轭双键异构化成共轭烯酸等都会提高熔点。每一个奇数碳原子脂肪酸的熔点,小于与它最接近的偶数碳原子脂肪酸的熔点,例如十七酸的熔点( 61.3℃),既低于十八酸的( 69.6℃),也低于十六酸的(62.7℃)。此现象不仅存在于脂肪酸,也见于其他长碳链化合物。

(4)沸点

脂肪酸的沸点随碳链增长而升高,饱和度不同但碳链长度相同的脂肪酸沸点相近。

(5)溶解性

低级脂肪酸易溶于水,但随着相对分子质量的增加,在水中的溶解度减小,以至溶或不溶于水,而溶于有机溶剂。一般脂肪酸越低级,不饱和度越高,其在有机溶剂中的溶解度也就越大,温度越高溶解度越大,碳链越长溶解度越小。

物质的物理性质,是其化学组成与结构的表现。在高级脂肪酸中,存在非极性的长碳链和极性的-COOH基与-COOR基。碳链长短与不饱和键的多少各有差异,导致脂肪酸的各种物理与化学性质的差异有的很小,有的很大,有时微小的差别显示出重大的意义。

脂肪酸可以用下面的方式表达它们的名称、碳原子数、不饱和双键的数目和位置。在表达它们的名称时,先写出碳原子的数目,再写出双键的数目,最后用△及右上角的数字表示双键的位置,并在双键位置数字后面加上c(cis,顺式)或t(trans,反式)表示双键的构型。例如,亚油酸的化学名称是顺,顺-9,12-十八烯酸

结构特点

天然脂肪酸的分子结构存在一些共同规律:

(1)一般都是碳数为偶数的长链脂肪酸,14- 20个碳原子的占多数,最常见的是16或18个碳原子数的,如软脂酸(16:0)、硬脂酸(18:0)和油酸(18:1△9)。

(2)高等动植物的不饱和脂肪酸一般都是顺式结构(cis),反式(trans)很少。

(3)不饱和脂肪酸的双键位置有一定的规律:一个双键者,位置在9和10碳原子之间,多个双键者,也常有9位的双键,其余双键在C。与碳链甲基末端之间,两个双键之间有亚甲基间隔,如油酸( 18:1△9)、亚油酸( 18:2△9,12)、亚麻酸( 18: 3△9,12,14)、花生四烯酸(20:4△5,8,11,14)。

(4) 一般动物脂肪中含饱和脂肪酸多;而高等植物和在低温条件下生长的动物的脂肪中,不饱和脂肪酸的含量较高。

天然三酰基甘油的饱和脂肪酸绝大多数都是偶碳数直链的,奇碳数链的极个别,含量也极少。

饱和脂肪酸是非常柔韧的分子,理论上围绕每个C-C键都能相对自由地旋转,因而有的构像范围很广。但是,其充分伸展的构象具有的能量最小,也最稳定;因为这种构象在毗邻的亚甲基间的位阻最小。和大多数物质一样,饱和脂肪酸的熔点随分子重量的增加而增加。

动植物脂质的脂肪酸中超过半数为含双键不饱和脂肪酸,并且常是多双键不饱和脂肪酸。细菌脂肪酸很少有双键但常被羟化,或含有支链,或含有环丙烷的环状结构。某些植物油和蜡含有不常见的脂肪酸。

哺乳动物和人体不能合成亚油酸和亚麻酸,而它们又是生长所必需的,需要由食物供给,故称为必需脂肪酸( essential fatty acids)。这两种脂肪酸在植物中含量非常丰富,哺乳动物中的花生四烯酸是由亚油酸合成的,花生四烯酸在植物中含量很少。

分类依据

自然界约有40多种不同的脂肪酸,它们是脂类的关键成分。许多脂类的物理特性取决于脂肪酸的饱和程度和碳链的长度,其中能为人体吸收、利用的只有偶数碳原子的脂肪酸。脂肪酸可按其结构不同进行分类,也可从营养学角度,按其对人体营养价值进行分类。按碳链长度不同分类。它可被分成短链(含2-4个碳原子)脂肪酸、中链(含6-12个碳原子)脂肪酸和长链(含14个以上碳原子)脂肪酸三类。人体内主要含有长链脂肪酸组成的脂类。

脂肪酸由C、H、O三种元素组成,是一端含有一个羧基的脂肪族碳氢链,是许多复杂酯的组成成分。低级脂肪酸是无色液体,有刺激性气味,高级脂肪酸是蜡状固体,无明显气味。脂肪酸在有充足氧供给的情况下,可氧化分解为CO2和H2O,释放大量能量,因此是生物体的主要能量来源之一。

脂肪酸有多种分类形式,分别分类如下。

根据碳链长度的不同分类

可分为:短链脂肪酸、中链脂肪酸和长链脂肪酸。

脂肪酸根据碳链长度的不同又可将其分为:

短链脂肪酸(short chain fatty acids,SCFA),其碳链上的碳原子数小于6,也称作挥发性脂肪酸(volatile fatty acids,VFA);

中链脂肪酸(Midchain fatty acids,MCFA),指碳链上碳原子数为6-12的脂肪酸,主要成分是辛酸(C8)和癸酸(C10);

长链脂肪酸(Longchain fatty acids,LCFA),其碳链上碳原子数大于12。一般食物所含的大多是长链脂肪酸。

根据碳氢链饱和与不饱和分类

脂肪酸根据碳氢链饱和与不饱和的不同可分为3类,即:

饱和脂肪酸(Saturated fatty acids,SFA),碳氢上没有不饱和键;

单不饱和脂肪酸(Monounsaturated fatty acids,MUFA),其碳氢链有一个不饱和键;

多不饱和脂肪酸(Polyunsaturated fatty acids,PUFA),其碳氢链有二个或二个以上不饱和键。

(1)饱和脂肪酸碳氢链上没有不饱和键,一般从C4到C38。从4个碳至24个碳原子的脂肪酸常存在于油脂中,而24个碳原子以上的则存在于蜡中。根据分子中碳原子数的多少可分为低级饱和脂肪酸(碳原子数≤10,常温下为液态)和高级饱和脂肪酸(碳原子数>10,常温下为固态)。动植物油脂中最常见的饱和脂肪酸有丁酸、己酸、辛酸、癸酸和高级饱和脂肪酸如十六酸(软脂酸)与十八酸(硬脂酸),其次为十二酸(月桂酸)、十四酸(豆蔻酸)和二十酸(花生酸)等。

(2)不饱和脂肪酸分子中含有一个或一个以上不饱和键的脂肪酸都称为不饱和脂肪酸。

不饱和脂肪酸通常呈液态,大多为植物油,如花生油、玉米油、豆油、坚果油(即阿甘油)、菜籽油等。根据不饱和键的多少又可分为单不饱和脂肪酸(有一个不饱和键,如豆蔻油酸、棕榈油酸、菜籽油酸)和多不饱和脂肪酸(有两个或两个以上不饱和键,如亚油酸、亚麻酸)。不饱和脂肪酸以亚麻酸、亚油酸油酸最为常见。

现已发现一些多不饱和脂肪酸(从甲基端数起,最后一个不饱和双键的位置在第三和第四个碳原子之间的脂肪酸)对人体有特殊的功能。最重要的这类脂肪酸是C22:6(4,7,10,13,16,19-二十二碳六烯酸,即DHA)和C20,5(5,8,11,14,17-二十碳五烯酸,即EPA),它们都属于重要的功能性物质。研究表明:DHA有很好的健脑功能,并对老年性痴呆症、异位性皮炎、高脂血症有疗效;EPA能使血小板凝聚能力降低、出血后血液凝固时间变长、心肌梗死发病率降低等。除上述功能外,EPA还可降低血液黏度、提高高密度胆固醇(优质胆固醇)的浓度,降低低密度胆固醇(劣质胆固醇)的浓度,因此EPA被认为可能对心血管疾病有良好的预防效果。DHA和EPA最主要的来源是深海鱼油,如沙丁鱼、乌贼、鳕鱼等都有较多数量的DHA和EPA。

富含单不饱和脂肪酸多不饱和脂肪酸组成的脂肪在室温下呈液态,大多为植物油,如花生油、玉米油、豆油、坚果油(即阿甘油)、菜籽油等。以饱和脂肪酸为主组成的脂肪在室温下呈固态,多为动物脂肪,如牛油、羊油、猪油等。但也有例外,如深海鱼油虽然是动物脂肪,但它富含多不饱和脂肪酸,如EPA和DHA,因而在室温下呈液态。

根据能够满足机体需要的程度分类

(1)必需脂肪酸

动物能合成所需的饱和脂肪酸和油酸这类只含1个双键的不饱和脂肪酸,含有2个或2个以上双键的多双键脂肪酸则必须从植物中获取,故后者称为必需脂肪酸,其中亚麻酸和亚油酸最重要。花生四烯酸从亚油酸生成。花生四烯酸是大多数前列腺素的前体,前列腺素是能调节细胞功能的激素样物质。

必需脂肪酸的最好来源是植物油,但在菜籽油和茶油中较其他植物油少。动物油脂中含量一般比植物油低,但相对来说,猪油比牛、羊脂含量多,禽类脂肪又比猪油多。肉类中鸡、鸭肉较猪、牛、羊肉含量丰富。动物心、肝、肾和肠等内脏中的含量高于肌肉,而瘦肉中含量比肥肉多。此外,鸡蛋黄中含量也较多。

(2)非必需脂肪酸

大多数脂肪酸人体能够自身合成,可以不从食物中直接摄取,这类脂肪酸称为非必需脂肪酸。非必需脂肪酸主要是饱和脂肪酸。虽然饱和脂肪酸为非必需脂肪酸,摄入过量会增加体内血脂的含量,但由于它对人体特别是对人的大脑的发育起着不可替代的作用,所以如果长期摄入不足,势必会影响大脑的发育。因此应当根据实际情况来决定各种动物脂和植物油的摄入量。

生化反应

氧化分解

β-氧化

脂肪酸不溶于水,在血液中与清蛋白结合后(10:1),运送至全身各组织细胞,在细胞的线粒体内氧化分解,释放出大量能量,以肝脏和肌肉最为活跃。1904年,Knoop刚苯环作标记,追踪脂肪酸在动物体内的转变,发现奇数碳脂肪酸衍生物被降解时,尿中检出马尿酸,若是偶数碳,尿中检出苯乙尿酸。推测脂肪酸酰基链的降解发生在β-碳原子上,即每次从脂酸链上切下一个二碳单位。后来的实验证明β-氧化学说是正确的,切下的二碳单位是乙酰CoA,脂肪酸进入线粒体前要先被活化。

1)脂肪酸的活化;

2)脂酰CoA进入线粒体;

3)脂酰CoA的β-氧化;

脂酰CoA氧化生成乙酰CoA涉及四个反应—脱氢、加水、再脱氢、硫解。每一次产生1分子乙酰CoA和比原来少2个C的脂酰CoA。再进行下一轮β-氧化,如此循环反复。

4)脂肪酸氧化的能量计算

1分子软脂酸(C16)经7次β-氧化可生成8个乙酰CoA、7个NADH和7个FADH2。每个乙酰CoA进入TCA循环生成3个NADH、1个FADH和1个GTP,并释放2分子CO2。

以脂肪为能源时,生物体还可获得大量的水。骆驼的驼峰是储存脂的“仓库”,既可提供能量,又可提供所需的水。

脂肪酸氧化的其他途径

(1)奇数碳原子脂肪酸的氧化。人体含微量奇数碳脂肪酸,许多植物、海洋生物和石油酵母等含一定量的奇数碳脂肪酸。其β-氧化除生成乙酰CoA外,还生成1分子丙酰CoA,后者在β-羧化酶及异构酶的作用下生成琥珀酰CoA,经TCA途径彻底氧化。

(2)不饱和脂肪酸的氧化。机体中约一半以上的脂肪酸是不饱和脂肪酸,其中双键均为顺式( cis)构型,它不能被烯脂酰CoA水化酶催化,该酶催化反式构型双键的加水过程,所以需要异构酶和还原酶参与才能使一般不饱和脂肪酸的氧化进行下去。如油酸是十八碳一烯酸((cis-△9),细胞质中的油酸同样先活化生成油酰CoA,经转运系统生成线粒体基质中的油酰CoA,经三轮β-氧化生成3分子乙酰CoA和cis-△3-十二碳烯脂酰CoA,后者经异构酶转化为trans-△2一十二碳烯脂酰CoA,由烯脂酰CoA水化酶作用生成L-β-羟脂酰CoA,再经五轮β-氧化生成6分子乙酰CoA,总计生成9分子乙酰CoA。

多不饱和脂肪酸的氧化还需一个特殊的还原酶参与进行。

酮体

酮体(acetone bodies)是脂肪酸在肝脏进行正常分解代谢所生成的特殊中间产物,包括有乙酰乙酸(acetoacetic acid约占30%),β-羟丁酸(β?hydroxybutyric acid约占70%)和极少量的丙酮(acetone)。正常人血液中酮体含量极少,这是人体利用脂肪氧化供能的正常现象。但在某些生理情况(饥饿、禁食)或病理情况下(如糖尿病),糖的来源或氧化供能障碍,脂动员增强,脂肪酸就成了人体的主要供能物质。若肝中合成酮体的量超过肝外组织利用酮体的能力,二者之间失去平衡,血中浓度就会过高,导致酮血症(acetonemia)和酮尿症(acetonuria)。乙酰乙酸β-羟丁酸都是酸性物质,因此酮体在体内大量堆积还会引起酸中毒。

生物合成

脂肪酸合成部位

体内肝、肾、脑、肺、乳腺、脂肪等组织的细胞质中均存在脂肪酸的合成酶系,因此这些组织均能合成脂肪酸,但以肝的脂肪酸合成酶系活性最高,因此肝细胞是人体内合成脂肪酸的主要部位。

脂肪组织虽然也能以葡萄糖代谢的中间产物为原料合成脂肪酸,其主要来源是小肠吸收的外源性脂肪酸和肝合成的内源性脂肪酸。

软脂酸的合成是在细胞质完成,但脂肪酸链延长则是在线粒体和内质网完成。

脂肪酸合成原料

合成脂肪酸的原料有乙酰辅酶A、HCO3-(C02)、NADPH和ATP,Mn2+可作为酶的激活剂。

脂肪酸合成途径

生物体内由乙酰CoA合成脂肪酸的有:①非线粒体酶系合成途径:即胞浆酶系合成饱和脂肪酸途径。该途径的终产物是软脂酸,故又称为软脂酸合成途径,它是脂肪酸合成的主要途径。②线粒体酶系合成途径:又称饱和脂肪酸碳链延长途径。

软脂酸

1.乙酰CoA的转移

乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸-丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线粒体到胞浆的转移。

首先在线粒体内,乙酰CoA与草酰乙酸经柠檬酸合成酶催化,缩合生成柠檬酸,再由线粒体内膜上相应载体协助进入胞液,在胞液内存在的柠檬酸裂解酶(citrate lyase)可使柠檬酸裂解产生乙酰CoA及草酰乙酸。前者即可用于生成脂肪酸,后者可返回线粒体补充合成柠檬酸时的消耗。但草酰乙酸也不能自由通透线粒体内膜,故必须先经苹果酸脱氢酶催化,还原成苹果酸再经线粒体内膜上的载体转运入线粒体,经氧化后补充草酰乙酸。也可在苹果酸酶作用下,氧化脱羧生成丙酮酸,同时伴有NADPH的生成。丙酮酸可经内膜载体被转运入线粒体内,此时丙酮酸可再羧化转变为草酰乙酸。每经柠檬酸丙酮酸循环一次,可使一分子乙酸CoA由线粒体进入胞液,同时消耗两分子ATP,还为机体提供了NADPH以补充合成反应的需要。

2.丙二酰CoA的生成

乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。

由乙酰CoA羧化酶催化的反应为脂肪酸合成过程中的限速步骤。此酶为一别构酶,在变构效应剂的作用下,其无活性的单体与有活性的多聚体(由100个单体呈线状排列)之间可以互变。柠檬酸与异柠檬酸可促进单体聚合成多聚体,增强酶活性,而长链脂肪酸可加速解聚,从而抑制该酶活性。乙酰CoA羧化酶还可通过依赖于cAMP的磷酸化及去磷酸化修饰来调节酶活性。此酶经磷酸化后活性丧失,如胰高血糖素肾上腺素等能促进这种磷酸化作用,从而抑制脂肪酸合成;而胰岛素则能促进酶的去磷酸化作用,故可增强乙酰CoA羧化酶活性,加速脂肪酸合成。

同时乙酰CoA羧化酶也是诱导酶,长期高糖低脂饮食能诱导此酶生成,促进脂肪酸合成;反之,高脂低糖饮食能抑制此酶合成,降低脂肪酸的生成。

3.软脂酸的生成

在原核生物(如大肠杆菌中)催化脂肪酸生成的酶是一个由7种不同功能的酶与一种酰基载体蛋白(acyl carrier protein,ACP)聚合成的复合体。在真核生物催化此反应是一种含有双亚基的酶,每个亚基有7个不同催化功能的结构区和一个相当于ACP的结构区,因此这是一种具有多种功能的酶。不同的生物此酶的结构有差异。

软脂酸的合成实际上是一个重复循环的过程,由1分子乙酰CoA与7分子丙二酰CoA经转移、缩合、加氢、脱水和再加氢重复过程,每一次使碳链延长两个碳,共7次重复,最终生成含十六碳的软脂酸。

脂肪酸合成需消耗ATP和NADPH+H+,NADPH主要来源于葡萄糖分解的磷酸戊糖途径。此外,苹果酸氧化脱羧也可产生少量NADPH。

脂肪酸合成过程不是β-氧化的逆过程,它们反应的组织,细胞定位,转移载体,酰基载体,限速酶,激活剂,抑制剂,供氢体和受氢体以及反应底物与产物均不相同。

其它脂酸类

机体内不仅有软脂酸,还有碳链长短不等的其它脂肪酸,也有各种不饱和脂肪酸,除营养必需脂肪酸依赖食物供应外,其它脂肪酸均可由软脂酸在细胞内加工改造而成。

1. 碳链的延长和缩短

脂肪酸碳链的缩短在线粒体中经β-氧化完成,经过一次β-氧化循环就可以减少两个碳原子。

脂肪酸碳链的延长可在滑面内质网和线粒体中经脂肪酸延长酶体系催化完成。

在内质网,软脂酸延长是以丙二酰CoA为二碳单位的供体,由NADPH+H+供氢,亦经缩合脱羧、还原等过程延长碳链,与胞液中脂肪酸合成过程基本相同。但催化反应的酶体系不同,其脂肪酰基不是以ACP为载体,而是与辅酶A相连参加反应。除脑组织外一般以合成硬脂酸(18C)为主,脑组织因含其他酶,故可延长至24碳的脂肪酸,供脑中脂类代谢需要。

在线粒体,软脂酸经线粒体脂肪酸延长酶体系作用,与乙酰CoA缩合逐步延长碳链,其过程与脂肪酸β氧化逆行反应相似,仅烯脂酰CoA还原酶的辅酶为NADPH+H+与β氧化过程不同。通过此种方式一般可延长脂肪酸碳链至24或26碳,但以硬脂酸最多。

2.脂肪酸脱饱和

人和动物组织含有的不饱和脂肪酸主要为软油酸(16:1△9)、油酸(18:1△9)、亚油酸(18:2△9,12)、亚麻酸(18:3△9,12,15)、花生四烯酸(20:4△5,8,11,14)等。其中最普通的单不饱和脂肪酸软油酸和油酸可由相应的脂肪酸活化后经去饱和酶(acylCoAdesaturase)催化脱氢生成。这类酶存在于滑面内质网,属混合功能氧化酶;因该酶只催化在△9形成双键,而不能在C10与末端甲基之间形成双键,故亚油酸(linoleate)、亚麻酸(linolenate)及花生四烯酸(arachidonate)在体内不能合成或合成不足。但它们又是机体不可缺少的,所以必须由食物供给,因此,称之为必需脂肪酸(essential fatty acid)。

植物组织含有可以在C-10与末端甲基间形成双键(即ω3和ω6)的去饱和酶,能合成以上3种多不饱和脂肪酸。当食入亚油酸后,在动物体内经碳链加长及去饱和后,可生成花生四烯酸

调节方法

乙酰CoA羧化酶催化的反应是脂肪酸合成的限速步骤,很多因素都可影响此酶活性,从而使脂肪酸合成速度改变。脂肪酸合成过程中其他酶,如脂肪酸合成酶、柠檬酸裂解酶等亦可被调节。

1.代谢物的调节

在高脂膳食后,或因饥饿导致脂肪动员加强时,细胞内软脂酰CoA增多,可反馈抑制乙酰CoA羧化酶,从而抑制体内脂肪酸合成。而进食糖类,糖代谢加强时,由糖氧化及磷酸戊糖循环提供的乙酰CoA及NADPH增多,这些合成脂肪酸的原料的增多有利于脂肪酸的合成。此外,糖氧化加强的结果,使细胞内ATP增多,进而抑制异柠檬酸脱氢酶,造成异柠檬酸及柠檬酸堆积,在线粒体内膜的相应载体协助下,由线粒体转入胞液,可以别构激活乙酰CoA羧化酶。同时本身也可裂解释放乙酰CoA,增加脂肪酸合成的原料,使脂肪酸合成增加。

2.激素的调节

胰岛素胰高血糖素肾上腺素及生长素等均参与对脂肪酸合成的调节。

胰岛素能诱导乙酰CoA羧化酶、脂肪酸合成酶及柠檬酸裂解酶的合成,从而促进脂肪酸的合成。此外,还可通过促进乙酰CoA羧化酶的去磷酸化而使酶活性增强,也使脂肪酸合成加速。

胰高血糖素等可通过增加cAMP,致使乙酰CoA羧化酶磷酸化而降低活性,因此抑制脂肪酸的合成。此外,胰高血糖素也抑制甘油三酯合成,从而增加长链脂酰CoA对乙酰CoA羧化酶的反馈抑制,亦使脂肪酸合成被抑制。

主要作用

脂肪酸常与其他物质结合形成酯,以游离形式存在的脂肪酸在自然界很罕见。

人在遇到饥饿或压力时,激素会激活脂肪细胞中的脂肪酶,将储存的甘油三酯转变回脂肪酸和甘油,然行它们被释放到血液中得到利用。除了脑细胞之外,身体的所有细胞在饥饿缺乏能量时都使自己适应于利用脂肪酸,脂肪酸同葡萄糖一样可转化成ATP的能量形式。事实上,能刺激甘油三酯裂解的激素在大脑内却是无效的。人的大脑由于不具备像身体其他部位那样的利用脂肪酸的能力,它只有利用葡萄糖。甘油三酯裂解后的另一产物-甘油,则循环至肝脏,肝脏将其通过另一条生物化学途径转化成葡萄糖以供养大脑。就这样,当养料缺乏时,身体的其他部分可依赖于脂肪酸,而大脑只能依靠它所需要得到的葡萄糖。

动物能合成所需的饱和脂肪酸和亚油酸这类只含1个双键的不饱和脂肪酸,含有2个或2个以上双键的多双键脂肪酸则必须从植物中获取,称为必需脂肪酸,其中亚麻酸和亚油酸最重要。在大部分含油脂丰富的食物中,有一半左右的热量是由脂肪和油类提供的。天然的脂肪和油类通常是由一种以上的脂肪酸与甘油形成的各种酯的混合物。这些脂肪酸的功能如下。

①能提供热量,是很好的能量来源。

②脂肪酸贮存在脂肪细胞中,以备人体不时之需。

③作为合成其他化合物的原料。

④能保持细胞膜的相对流动性,以保证细胞的正常生理功能。

⑤使胆固醇酯化,降低血液中胆固醇和甘油三酯含量。

⑥提高脑细胞活性,增强记忆力和思维能力。

脂肪酸可用于丁苯橡胶生产中的乳化剂和其它表面活性剂润滑剂、光泽剂;还可用于生产高级香皂、透明皂、硬脂酸及各种表面活性剂的中间体。

功能性

每一类、每一种脂肪酸均有其特定用途和功能特性。功能性脂肪酸是特指那些来源于人类膳食油脂,为人体营养、健康所必需,并对现已发现的人体一些相应缺乏症和内源性疾病,特别是对现今社会文明病如高血压、心脏病、癌症、糖尿病等有积极防治作用的一组脂肪酸,这其中又以备受关注和广为研究的多不饱和脂肪酸为主。

多不饱和脂肪酸

多不饱和脂肪酸是功能性脂肪酸研究和开发的主体与核心,根据其结构又分为n-6和n-3两大主要系列。这类脂肪酸受到广泛关注,不仅仅因为n-6系列的亚油酸和n-3系列的α-亚麻酸是人体不可或缺的必需脂肪酸,更重要的是因为其在人体生理中起着极为重要的代谢作用,与现代诸多文明病的发生与调控息息相关。目前认为n-6和n-3脂肪酸功能的突出重要性,首先在于它们是体内有重要代谢功能的前列腺素、白三烯等的前体。另一突出重要性在于,它们是人体器官和组织生物膜的绝对必需成分。此外,这些多不饱和脂肪酸分子本身在人体其他许多正常生理过程中起着特殊作用。

1.亚油酸

亚油酸(linoleic acid)是功能性多不饱和脂肪酸中被最早认识的一种,而且在世界范围内的绝大多数膳食营养中占据着不饱和脂肪酸的大部分。亚油酸具有降低血清胆固醇水平的作用,与12:0 -16:0饱和脂肪酸相比,亚油酸具有较强的降低LDL-胆固醇的浓度的作用。摄入大量亚油酸对高三酰基甘油血症病人效果较为明显。我国药典仍有采用亚油酸乙酯丸剂、滴剂作预防和治疗高血压及动脉粥样硬化症、冠心病的药物。

2.花生四烯酸

亚油酸被定为必需脂肪酸的部分原因在于它是n-6长链多不饱和脂肪酸,还是花生四烯酸( arachidonic acid)的前体,花生四烯酸较多地存在于神经组织和脑中,大脑积极地代谢花生四烯酸,其代谢产物对中枢神经系统有重要影响,包括神经元跨膜信号的调整、神经递质的释放以及葡萄糖的摄取。从妊娠的第三个月到约2岁婴儿的生命成长发育中,花生四烯酸在大脑内快速积累,在细胞分裂和信号传递方面起重要作用。对于成年人,膳食花生四烯酸的供给是否影响与脑代谢有关的花生四烯酸底物库尚不清楚。在一些抗肿瘤动物试验中,已证明花生四烯酸在体外能显著杀灭肿瘤细胞,而且对正常细胞没有显示出毒副作用。花生四烯酸已被试验性地用于一些抗癌药物新剂型中。

3.γ-亚麻酸

γ-亚麻酸(γ-lenolenic acid)在1919年由Heidush Kaand Laft于月见草油中发现。目前,富含γ-亚麻酸的月见草油及γ-亚麻酸制品已在营养与医疗方面获广泛应用。γ-亚麻酸在临床上的试验结果表明其有降血脂作用,对三酰基甘油、胆固醇、p-脂蛋白的下降有效性在60%以上,而且γ-亚麻酸在体内转变成具有扩张血管作用的PGI2,保持与血栓素A2 (TXA2)的平衡,防止血栓形成,从而达到防治心血管疾病的效果。γ-亚麻酸在体内可刺激棕色脂肪组织,促使该组织中线粒体活化,使体内过多热量能得以释放,起到防止肥胖症的目的,而且可减轻机体内细胞膜脂质过氧化损害。

4.α-亚麻酸

α-亚麻酸(α-lenolenic acid)最重要的生理功能首先在于它是n-3系列多不饱和脂肪酸的母体,在体内代谢可生成DHA和EPA。由于DHA是脑和视网膜中两种主要的多不饱和脂肪酸之一,所以,许多动物试验表明,膳食中α-亚麻酸,特别是在极度或长期缺乏情况下,会出现相应缺乏症状,出现视觉循环缺陷与障碍。同时α-亚麻酸的生理功能还表现在对心血管疾病的防治上。Berry和Hirsch在1987年就通过对一组无心脏病或高血压的中年男子的脂肪组织中的脂肪酸组成分析,指出脂肪组织中α-亚麻酸每增加1%,动脉收缩和舒张压就降低667Pa。1988年后,Salonen等人观察到芬兰男子较低的血压与α-亚麻酸摄入水平有重要关联,支持了前述研究结论。我国医学科学院用富含α-亚麻酸的苏子油对鼠的高脂血症试验表明:α-亚麻酸能明显降低血清中总胆固醇和LDL-胆固醇水平,提高HDL-胆固醇/LDL-胆固醇比值,作用优于安妥明。α-亚麻酸的另一重要功能是增强机体免疫效应。

5.DHA和EPA

从对包括人在内的动物的脑、视网膜和神经组织的分析可以发现,二十二碳六烯酸( doco-sahexaenoic acid.DHA)是其中的主要脂肪酸,是大脑及视网膜的正常发育及功能保持所必需的。其作用机制首先是由于高度的不饱和而形成一个高度流体性的膜环境,除此之外,它还具有不可替代的特殊作用机制。在脑灰色物质和视网膜中,DHA占2-羟基乙胺磷酸甘油酯中脂肪酸的30%以上。在脑中,DHA和突触体、突触小泡、髓磷脂、微粒体、线粒体结合。与花生四烯酸相比,DHA优先结合于视网膜形成三酰基甘油。对猫、猴子等动物的有关DHA与视觉功能的实验较好地揭示了DHA在视力方面的重要性。而且DHA和EPA( eicosapentaenoic acid,二十碳五烯酸)摄入后,可快速地显著提高体内这两种脂肪酸的水平,为其功能的及时发挥提供了保证。因此,在神经系统方面,DHA和EPA被证明具有维持和改善视力,提高记忆、学习等能力,抑制老年痴呆症的生理学效果。

中链脂肪酸

中链脂肪酸在体内主要以游离形式被吸收。由于碳链短,中链脂肪酸较长链脂肪酸水溶性好而容易被胃肠吸收,不会像长链脂肪酸在肠内细胞重新酯化。含中链脂肪酸的油脂一入口就在舌脂肪酶作用下消化并在胃中继续水解,舌脂肪酶对富含中链脂肪酸的三酰基甘油水解具有专一性,从肠内水解吸收到血液需0. 5h,2.5h可达最高峰,是长链脂肪酸耗时的一半。中链脂肪酸除少量在周围血液中短期存在外,大部分与白蛋白结合,通过门静脉系统较快地到达肝脏。在肝脏中,中链脂肪酸能迅速通过线粒体双层膜,在辛酰CoA作用下迅速被酰化,而几乎不被合成脂肪。酰化产生的过多的乙酰CoA在线粒体胞浆中发生各种代谢作用,其中大部分趋向合成酮体,其生酮作用强于长链脂肪酸,而且不受甘油、乳酸盐、葡萄糖一胰岛素等抗生酮物质的影响,在肝脏外组织中,中链脂肪酸的代谢作用较少,但在脐带血中发现C8:0或以下脂肪酸占15%-20%,这一点也显示中链脂肪酸在胎儿营养中也有生理作用。

由于中链脂肪酸生化代谢相对快速,所以它可作为快速能量来源,特别是对膳食油脂中长链脂肪酸难以消化或脂质代谢紊乱的个体,如无胆汁症、胰腺炎、原发性胆汁肝硬化、结肠病、小肠切除、缺乏脂肪酶的早产儿和纤维囊泡症病人等。中链脂肪酸的另一重要作用是酮体效应,所有肝外组织可利用它迅速氧化产生大量酮体,手术后病人可利用它来提供热能,妊娠妇女可通过注射中链脂肪酸酯补充胎儿消耗酮体较多的需求。它还能节约慢性病患者肌肉中的肉碱,改善与败血症或创伤有关的酮体血症的抑制状态。此外,中链脂肪酸生成的酮体具有麻醉和抗惊厥作用,在临床上已被用作无抗药性的癫痫治疗药物。

油脂摄取

无论是植物性或动物性油脂每克都有 9卡的热量。但是植物性油含分解脂肪的物质,适度摄取是有益的,但并不表示其热量较低。一般人认为植物油很安全,可以多吃,这个是错误的观念,不但减肥的人必须限量摄食植物油,以免对减肥不利,要健康长寿的人更应如此。

人们所需的脂肪酸有三类:多元不饱和脂肪酸、单元不饱和脂肪酸饱和脂肪酸。我们常用的食用油通常都含人体需要的三种脂肪酸。

每人每日油脂摄取量只能占每日食物总热量的二成,(每天的用油量控制在15至30毫升)每人每天要吃齐这三种脂肪酸,不能偏好任一油类,否则油脂摄取失衡,会形成疾病。每日单元不饱和脂肪酸的摄食量要占一成,多元不饱和脂肪酸要占一成,而饱和脂肪酸要少于一成。

动物油、椰子油和棕榈油的主要成分是饱和脂肪酸,而多元不饱和脂肪酸的含量很低。

橄榄油坚果油(即阿甘油)、菜籽油、玉米油、花生油的单元不饱和脂肪酸含量较高,人体需要的三种脂肪酸中,以单元不饱和脂肪酸的需要量最大,玉米油、橄榄油可作这种脂肪酸的重要来源。

葵花油、粟米油油、大豆等植物油和海洋鱼类中含的脂肪多为多元不饱和脂肪酸。多元不饱和脂肪酸是这些食用油的主要成份,其他两种脂肪酸含量不多。三种脂肪酸中,多元不饱和脂肪酸最不稳定,在油炸、油炒或油煎的高温下,最容易被氧化变成毒油。而偏偏多元不饱和脂肪酸又是人体细胞膜的重要原料之一。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}