艾森斯坦整数

更新时间:2022-03-22 07:44

艾森斯坦整数在复平面上形成了一个三角形点阵。高斯整数则形成了一个正方形点阵。

性质

艾森斯坦整数在代数数域Q(ω)中形成了一个代数数交换环。每一个z = a + bω都是首一多项式的根。特别地,ω满足以下方程:

因此,艾森斯坦整数是代数数

艾森斯坦整数的范数是它的绝对值的平方,由以下的公式给出:

因此它总是整数。由于:

因此非零艾森斯坦整数的范数总是正数。

艾森斯坦整数环中的可逆元群,是复平面中六次单位根所组成的循环群。它们是:

{±1, ±ω, ±ω2}它们是范数为一的艾森斯坦整数。

艾森斯坦素数

设x和y是艾森斯坦整数,如果存在某个艾森斯坦整数z,使得y = z x,则我们说x能整除y。

它是整数整除概念的延伸。因此我们也可以延伸素数的概念:一个非可逆元的艾森斯坦整数x是艾森斯坦素数,如果它唯一的因子是ux的形式,其中u是六次单位根的任何一个。

我们可以证明,任何一个被3除余1的素数都具有形式x−xy+y,因此可以分解为(x+ωy)(x+ωy)。因为这样,它在艾森斯坦整数中不是素数。被3除余2的素数则不能分解为这种形式,因此它们也是艾森斯坦素数。

任何一个艾森斯坦整数a + bω,只要范数a−ab+b为素数,那么就是一个艾森斯坦素数。实际上,任何一个艾森斯坦整数要么就是这种形式,要么就是一个可逆元和一个被3除余2的素数的乘积。

欧几里德域

艾森斯坦整数环形成了一个欧几里德域,其范数N由以下的公式给出:

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}